1-planar graph - definizione. Che cos'è 1-planar graph
Diclib.com
Dizionario ChatGPT
Inserisci una parola o una frase in qualsiasi lingua 👆
Lingua:

Traduzione e analisi delle parole tramite l'intelligenza artificiale ChatGPT

In questa pagina puoi ottenere un'analisi dettagliata di una parola o frase, prodotta utilizzando la migliore tecnologia di intelligenza artificiale fino ad oggi:

  • come viene usata la parola
  • frequenza di utilizzo
  • è usato più spesso nel discorso orale o scritto
  • opzioni di traduzione delle parole
  • esempi di utilizzo (varie frasi con traduzione)
  • etimologia

Cosa (chi) è 1-planar graph - definizione


1-planar graph         
  • cocktail party graph]] ''K''<sub>2,2,2,2</sub>
  • Coloring the vertices and faces of the triangular prism graph requires six colors
In topological graph theory, a 1-planar graph is a graph that can be drawn in the Euclidean plane in such a way that each edge has at most one crossing point, where it crosses a single additional edge. If a 1-planar graph, one of the most natural generalizations of planar graphs, is drawn that way, the drawing is called a 1-plane graph or 1-planar embedding of the graph.
Null graph         
GRAPH WITHOUT EDGES (ON ANY NUMBER OF VERTICES)
Empty tree; Empty graph; Null Graph; Null tree; Singleton graph; Edgeless graph; Order-zero graph
In the mathematical field of graph theory, the term "null graph" may refer either to the order-zero graph, or alternatively, to any edgeless graph (the latter is sometimes called an "empty graph").
Turán graph         
  • The [[octahedron]], a 3-[[cross polytope]] whose edges and vertices form ''K''<sub>2,2,2</sub>, a Turán graph ''T''(6,3). Unconnected vertices are given the same color in this face-centered projection.
GRAPH
Turan graph; Cocktail party graph; Octahedral Graph; Octahedral graph
The Turán graph, denoted by T(n,r), is a complete multipartite graph; it is formed by partitioning a set of n vertices into r subsets, with sizes as equal as possible, and then connecting two vertices by an edge if and only if they belong to different subsets. Where q and s are the quotient and remainder of dividing n by r (so n = qr + s), the graph is of the form K_{q+1, q+1, \ldots, q, q}, and the number of edges is